EE 242 EXPERIMENT 4 PHASOR DIAGRAMS

OBJECTIVE

To develop the ability to construct accurate phasor diagrams for understanding KVL in ac circuits.

EQUIPMENT

1 Agilent 33120A Function Generator
1 Agilent 34401A Multimeter
1 Agilent 54622A Oscilloscope
2 Decade Resistance Boxes
1 8H Inductor
1 Decade Capacitor
2 BNC-Banana
6 Banana-Banana

BRING A STRAIGHT-EDGE, SCALE, PROTRACTOR, AND 6” COMPASS TO THE LAB.

DISCUSSION

Figure 1(a) shows a simple ac circuit with series RL components. L and R_L are lumped parameters representing quantities that are distributed throughout the entire length of the coil of wire. The Kirchoff’s Voltage Law for the circuit may be described by drawing a phasor diagram to show both magnitude and phase angle of the voltages in the circuit. Figure 1(b) illustrates such phasor diagram. Note that circuit current is chosen to be the reference for the phasor diagram since current is common to all components in the circuit. In the lab, the magnitudes of V_s, V_L, and V_A are measurable, but not so for V_L and V_RL. This is where phasor diagrams may be useful.

![Figure 1. (a) A simple series RL ac circuit (b) Phasor Diagram for series RL ac circuit](image)

1 Original experiment, amended and revised 02/16/05, Taufik
To determine magnitude of V_L and V_{RL}, it should be noticed first that phasor V_R should be in phase with the reference current, while phasor V_A has two phasor components: V_{RL} which is in phase with the current and V_L which leads the current by 90^o. Next, since the phase angle of V_A, let’s call it θ, must be between 0^o and 90^o, a compass with a radius of V_A and with its center point at the head of V_R was used to draw an arc in the first quadrant. Similarly, a compass with radius V_s and center point at the common origin was used to draw another arc in the first quadrant. Plotting V_A from the head of V_R to the intersection of the arcs and V_s from the common origin to the intersection of the arcs yields the voltage phasor diagram that satisfies KVL for the circuit $V_s = V_R + V_A$. Careful measurement of V_L and V_{RL} from the phasor diagram combined with a knowledge of frequency of the source, a measurement of I yields the values of L, R_L, and Q_S of the inductor.

$$Q_s = \tan \theta = \frac{|V_L|}{|V_{RL}|} = \frac{|IX_L|}{|IR_L|} = \frac{X_L}{R_L}$$

The graphical technique of phasor diagram analysis may also be applied to R-L-C circuit operating in steady-state at a constant frequency. Graphical analysis of the series RL circuit of Figure 1(b) closely parallels the analysis of series RLC circuit of Figure 2(b). To simplify the analysis, assume that the capacitor is an ideal element. Hence, the voltage phasor V_C may be plotted at –90 degrees relative to the circuit current I.

Graphical determination of circuit components such as L and R_L of Figure 1(a) by the phasor diagram method yields best results if the Q of the inductor is such that θ is in the range of approximately 30 to 60 degrees, or equivalently Q_S is about 0.5 to 2. The Q of the inductor available for your use is, by itself, considerably greater than 2. This results in the angle associated with V_A (θ in Figure 2) being so near to 90^o that avoiding significant errors in the graphical analysis is very difficult. Adding a 20 KΩ resistor in series with the inductor and treating the added resistor as part of the inductor’s resistance (making the combination a “lossy inductor” of low Q) results in a more practical laboratory situation.

Figure 2. (a) A series RLC ac circuit (b) Phasor Diagram for series RLC ac circuit
The Impedance Bridge, Models, and Quality Factor Q

Figure 3 shows the Series and Parallel Inductor models. The series Q of a practical inductor or capacitor is equal to its parallel Q:

$$Q_s = Q_p = Q$$

where $Q_s = X_s/R_s$ and $Q_p = B_p/G_p$ for practical inductive or capacitive reactances. Also, continuing to work with the models of Figure 3 yields

$$R_p = R_s \left(1 + Q^2\right)$$

$$X_p = X_s \left(1 + \frac{1}{Q^2}\right)$$

If the nature of X is inductive, then

$$L_p = L_s \left(1 + \frac{1}{Q^2}\right)$$

If the nature of X is capacitive, then

$$C_p = C_s \left(1 + \frac{1}{Q^2}\right)$$

Figure 3. (a) Series inductor model (b) Parallel inductor model

PRELAB

Figure 4. Series RLC ac circuit
1. Draw the phasor diagram for the circuit shown in Figure 4 and determine the values of C, L, and R_L for an operating frequency of 1000 Hz.
2. From your results of the previous part, determine the inductor’s parallel circuit model.

PROCEDURE

MAKE EACH PHASOR DIAGRAM THE SIZE OF AN ENTIRE PAGE OF ENGINEERING PAPER.

![Figure 5. Series RLC ac circuit](image)

Accurate results may be obtained graphically **ONLY** if great care is exercised in making the various voltage and current measurements AND in plotting the results.

Part 1: Series RL Circuit

1. Assemble the circuit of Figure 5 without the capacitor (R-L circuit only).
2. Set the function generator for **HIGH IMPEDANCE** and set V_s to be sinusoidal at 1000 Hz.
3. Using multimeter across the 25 kΩ resistor, set the rms of V_s to yield a convenient value of V_R (such as 2.0 Vrms).
4. At your chosen value of V_R, measure and record the values of V_s and V_A.
5. Construct an accurate full-page phasor diagram (similar to Figure 1(b)):
 - Draw current $I = V_R/R$ as the reference phasor (with θ° phase on the horizontal axis)
 - Draw V_R (in phase with I)
 - Use compass set to the measured value of V_A. Use the scale given on reference axis. Place the pin of compass at the tip of V_R and mark an arc in the first quadrant.
 - Repeat the previous step for V_s from the origin.
 - Draw point of intersection
 - Draw vector V_A from tip of V_R to point of intersection
 - Drop vertical line from point of intersection to intersect the horizontal line drawn from tip of V_R (or tip of V_C). This is V_L.
 - By KVL $\vec{V}_A = \vec{V}_{RL} + \vec{V}_L$, therefore the horizontal component of V_A is V_{RL} and note that V_{RL} should also be in phase with the reference current I.
6. From the diagram, measure ϕ, θ, V_L, and V_{RL}. Using these values, compute R_L, X_L, inductor’s Q and inductance, and the power factor of the circuit as seen by the function generator.
Part 2: Series RLC Circuit

1. Install the capacitor. With V_S set to obtain the same value of V_R as in part 1, measure V_S, V_R, V_A and V_C.

2. Using the same current and voltage scales as you used for the phasor diagram of part 1, construct a full-page phasor diagram of the R-L-C circuit (similar to Figure 2(b)).

3. From the phasor diagram, measure and calculate, ϕ, θ, V_L and V_{RL}. Using these measured values, compute R_L, X_L, inductor’s Q and inductance, and the power factor of the circuit as seen by the function generator.

4. Using the Impedance Bridge (select its internal 1 kHz oscillator), measure and record the inductance and Q of the equivalent low-Q inductor (the series combination of the 8-H inductor and 20-Ω resistor).

5. From these bridge measurements, calculate the series equivalent resistance of the 8-H inductor (the low-Q equivalent inductor’s resistance minus the 20 kΩ added resistance).

6. Compare and calculate the percent difference of the values of R_L and L calculated from the two phasor diagrams (part 1 & 2) to the bridge-based values obtained previously.